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Abstract

Symbolic analysis (SA) is usually applied for the
assessment of cardiac control from spontaneous
variability of heart period (HP). However, SA does not
account for the amplitude of HP changes because
patterns featuring small and large variations are included
in the same class. The aim of this study is to propose an
amplitude SA (ASA) approach accounting for pattern
amplitudes. The adopted SA method was grounded on a
uniform 6-bin quantization, on the construction of length-
3 patterns and on their grouping into four families
according to the number and sign of the variations
between adjacent symbols. The percentages of patterns
belonging to a given class were computed. ASA assessed
the variance of the pattern over the original HPs and
averaged it within each class. SA and ASA were applied
during a pharmacological challenge inducing central
sympathetic inhibition and vagal enhancement in &8
healthy male volunteers (age range: 25-46 yrs). We found
that both SA and ASA suggest a shift toward vagal
activation with a greater presence of patterns featuring
fast changes and larger variations. Remarkably, SA and
ASA indexes computed over the same class were found to
be uncorrelated, thus suggesting that they can capture
different features of the HP dynamics and complementary
aspects of the cardiac control.

1. Introduction

Methods based on symbolic analysis (SA) were
utilized to assess cardiac control from spontaneous
fluctuations of heart period (HP) [1,2]. Their exploitation
is justified by the ability of SA approaches to decompose
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the HP dynamics into a sequence of patterns of simple
interpretation. For example, patterns featuring a small
variety of symbols indicate a reduced sinus node
responsiveness, a more predictable HP dynamics and a
low complexity of the cardiac control, while patterns
composed by a larger number of symbols suggest a
greater promptness to changes, richness of HP dynamics
and a more complex cardiac regulation. Easiness of
interpretation, direct link with complexity of the cardiac
control and fastness of decomposition procedure
contributed to the success of this class of methods for HP
variability analysis [3,4].

Regardless of the class of SA approaches, being
roughly classified into amplitude-based (AB) and
variation-based (VA) methods [5], the major limitation of
SA is the missing inclusion of information about the
amplitude of the HP fluctuations. Indeed, in AB
approaches the HP series is normalized between the
minimum and the maximum before coding the original
value with a symbol [6-10], while VB approaches are
mainly based on the sign of variations and use the
information relevant to the magnitude of variations only
to limit the impact of noise [10-15].

The aim of this study is to extend a traditional SA
method [1,2] by accounting for the amplitude of
variations among adjacent components composing the
patterns. The approach, referred to as amplitude SA
(ASA), was compared to traditional SA during a
pharmacological challenge protocol [16] to assess
complementary information.

2. Methods

2.1. SA
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We followed the symbolic approach described in [6,7].
Briefly, the series y={y;, i=Il,...,N}, where i is the
progressive beat counter and N is the series length, was
coarse-grained by subdividing the min-max range of y
into ¢ bins of equal amplitude. Each value y; was
substituted with the integer value )%, labelling the bin y;
belonged to. Consecutive m integer )%, values were

grouped to form a y,Em- =
[yl.E yfﬂ yf+m_1] of length m. According to

previous recommendations, N was set to 256 to focus
short-term regulatory mechanisms, ¢ and m were set to 6

pattern

and 3 respectively [6]. Each pattern y§n==63'i was classified
into four classes according to the number and sign of
variations between adjacent components: i) no variation
(0V) featuring m=3 equal symbols; ii) one variation (1V)
presenting two consecutive equal symbols, while the third
one was different; iii) two like variations (2LV) featuring
two non-zero variations of the same sign between
adjacent symbols; iv) two unlike variations (2UV)
presenting two non-zero variations of opposite sign

between adjacent symbols. Since any pattern yf:fs'i fell

into one, and only one, category, the sum of the number
of 0V, 1V, 2LV and 2UV patterns was N-m+1. The
percentage of OV, 1V, 2LV and 2UV patterns, indicated
as 0V%, 1V%, 2LV% and 2UV%, was computed.

2.2, ASA

ASA approach acted on the pattern y?:f&i attributed to
the OV, 1V, 2LV and 2UV classes but it came back to the
original HPs composing the pattern y,,_3; and assessed
their variance within y,,_3;. The variance was averaged

within each class, expressed in ms? and labelled as a0V,
alV, a2LV, and a2UV.

3. Experimental series

extraction

protocol and

3.1. Experimental protocol

The experimental protocol was an arm of the
pharmacological  procedure designed to induce
modifications of sympatho-vagal control [16]. All the
subjects gave their written informed consent. The
protocol adhered to the principles of the Declaration of
Helsinki. The human research and ethical review board of
the Hospices Civils de Lyon approved the protocol.
Briefly, we studied 8 healthy male volunteers aged from
25 to 46 years. Electrocardiogram (ECG) and noninvasive
finger blood pressure (Finapress 2300, Ohmeda,
Englewood, Colorado, USA) were recorded. Each
experiment consisted of 15-20 minutes of recording at
baseline (B) while resting in supine position followed by

15-20 minutes of recording taken 120 minutes after oral
administration of 6 ugkg' of clonidine hydrochloride
(CL). CL blocked the sympathetic outflow to heart and
vasculature, while centrally increasing the cardiac
parasympathetic activity [17].

3.2. HP variability extraction

HP was measured as the temporal distance between
two consecutive R-wave peaks detected on the ECG. HP
was extracted on a beat-to-beat basis and corrected in the
case of erroneous and missing detections. The series were
linearly detrended. Sequences of 256 consecutive
measurements were randomly selected inside each
experimental condition. The mean and the variance of HP
were indicated as pup and o’up respectively. They are
expressed in ms and ms? respectively.

3.3.  Statistical analysis

Paired t-test, or Wilcoxon signed rank test when
appropriate, was applied to check the impact of CL. After
pooling together all markers regardless of the
experimental condition, linear regression analyses
between SA and ASA indexes computed over the same
class were performed. We computed Pearson product
moment correlation coefficient » and type 1 error
probability p. Statistical analysis was performed with a
commercial statistical software (Sigmaplot v.14.0, Systat
Software, San Jose, CA, USA). A p<0.05 was always
deemed as significant.

4. Results

After CL pup lengthened significantly, while o?up
remained unvaried.

The vertical error bar graphs of Fig.1 show 0V%
(Fig.1a), 1V% (Fig.1b), 2LV% (Fig.lc), and 2UV%
(Fig.1d) as a function of the experimental condition (i.e.,
B and CL). 2LV% decreased, and 2UV% increased after
CL, while 0V% and 1V% did not vary.

Figure 2 has the same structure as Fig.1, but it shows
a0V (Fig.2a), alV (Fig.2b), a2LV (Fig.2c), and a2UV
(Fig.2d). Both alV and a2UV increased after CL, while
a0V and a2LV remained constant.

A significant correlation was detected between 1V%
and alV (=-0.745 and p=9.26x10%) and between
2UV% and a2UV (=0.661 and p=5.34x10"%), while
2LV% and a2LV were uncorrelated (=—0.144,
p=5.95x10"") as well as 0V% and a0V (=—0.403,
p=1.22x107H.

5. Discussion

5.1. SA vs ASA approach
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Figure 1. The vertical error bar graphs show 0V% (a),
1V% (b), 2LV% (c), and 2UV% (d) at B and after CL.
Data are reported as mean + standard deviation. The
symbol * indicates p<0.05.

SA is based on the decomposition and classification of
patterns present in HP variability series with the aim of
enhancing features linked to autonomic control and its
complexity [3,4]. Being a nonlinear method, SA has the
possibility to overcome limitations of more traditional
time domain indexes such as the variance. In addition, SA
is not based on the strict definition of frequency bands
like spectral analysis [18], thus preventing categorizations
based on arbitrary definitions of inferior and superior
frequency limits. The characteristics support the
hypothesis that SA might be more powerful than time and
frequency domain methods in describing nonlinear
interactions across different time scales and phenomena
that cannot be explained according to the usual paradigm
of reciprocal interactions between vagal and sympathetic
modulations [19,20], such as those observed during
strenuous exercise and exercise recovery [21].

The major limitation of the SA technique is that SA
accounts exclusively for the likelihood of the pattern class
regardless of the amplitude of the changes of the HP
values composing the pattern belonging to the considered
class. Conversely, ASA method was explicitly designed
to provide the magnitude of HP changes within the
pattern that was averaged over all the patterns belonging
to a given class. The concomitant use of SA and ASA
approaches allows one to complement the information on
the rate of the class with that of the relevance of the class
in contributing to the variability of HP series.

5.2. Impact of CL

CL induced an increase of upp, even though the
magnitude of HP variability was not affected.
Remarkably, SA and ASA were more powerful than the
time domain approach in describing the impact of CL on
HP variability. Indeed, SA and ASA indicated that both
the rate and the amplitude of the fastest class, namely
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Figure 2. The vertical error bar graphs show a0V (a), alV
(b), a2LV (c), and a2UV (d) at B and after CL. Data are
reported as mean + standard deviation. The symbol *

indicates p<0.05.

2UV, significantly increased. This result agrees with the
notion that CL induces an inhibition of sympathetic
control and an activation of the vagal one [16,17]. It is
worth noting that the combined use of SA and ASA
suggested a shift toward the high frequency oscillations
given that 2LV% significantly decreased after CL, while
2UV% and a2UV significantly augmented.

5.3.  SA and ASA provide complementary
information

When the level of association between SA and ASA
indexes relevant to the same class was computed, we
found that markers might be uncorrelated, thus indicating
that classes of SA and ASA markers might provide
complementary information. While the uncorrelation
between 0V% and a0V might be expected because of the
low likelihood of OV class in our experimental protocol
combined to the small variability of HP values forming
the patters belonging to the OV family, uncorrelation
between 2LV% and a2LV suggests that there is no direct
relationship between the rate of a pattern class and the
magnitude of HP variability computed within a pattern
averaged over the all components of the class.

6. Conclusions

The study proposes the concomitant use of SA and
ASA for a deeper characterization of the autonomic
control from the analysis of spontaneous HP fluctuations.
The combination of methods assures the concomitant
evaluation of the rate of pattern families and amplitude of
HP changes within patterns belonging to the same class.
We recommend the combined use of SA and ASA for the
characterization of autonomic function, especially in
situations featuring modifications of cardiac control
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complexity such as during aging and sleep [22,23].
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