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Abstract 

Symbolic analysis (SA) is usually applied for the 
assessment of cardiac control from spontaneous 
variability of heart period (HP). However, SA does not 
account for the amplitude of HP changes because 
patterns featuring small and large variations are included 
in the same class. The aim of this study is to propose an 
amplitude SA (ASA) approach accounting for pattern 
amplitudes. The adopted SA method was grounded on a 
uniform 6-bin quantization, on the construction of length-
3 patterns and on their grouping into four families 
according to the number and sign of the variations 
between adjacent symbols. The percentages of patterns 
belonging to a given class were computed. ASA assessed 
the variance of the pattern over the original HPs and 
averaged it within each class. SA and ASA were applied 
during a pharmacological challenge inducing central 
sympathetic inhibition and vagal enhancement in 8 
healthy male volunteers (age range: 25-46 yrs). We found 
that both SA and ASA suggest a shift toward vagal 
activation with a greater presence of patterns featuring 
fast changes and larger variations. Remarkably, SA and 
ASA indexes computed over the same class were found to 
be uncorrelated, thus suggesting that they can capture 
different features of the HP dynamics and complementary 
aspects of the cardiac control. 

 
 

1. Introduction 

Methods based on symbolic analysis (SA) were 
utilized to assess cardiac control from spontaneous 
fluctuations of heart period (HP) [1,2]. Their exploitation 
is justified by the ability of SA approaches to decompose 

the HP dynamics into a sequence of patterns of simple 
interpretation. For example, patterns featuring a small 
variety of symbols indicate a reduced sinus node 
responsiveness, a more predictable HP dynamics and a 
low complexity of the cardiac control, while patterns 
composed by a larger number of symbols suggest a 
greater promptness to changes, richness of HP dynamics 
and a more complex cardiac regulation. Easiness of 
interpretation, direct link with complexity of the cardiac 
control and fastness of decomposition procedure 
contributed to the success of this class of methods for HP 
variability analysis [3,4]. 

Regardless of the class of SA approaches, being 
roughly classified into amplitude-based (AB) and 
variation-based (VA) methods [5], the major limitation of 
SA is the missing inclusion of information about the 
amplitude of the HP fluctuations. Indeed, in AB 
approaches the HP series is normalized between the 
minimum and the maximum before coding the original 
value with a symbol [6-10], while VB approaches are 
mainly based on the sign of variations and use the 
information relevant to the magnitude of variations only 
to limit the impact of noise [10-15]. 

The aim of this study is to extend a traditional SA 
method [1,2] by accounting for the amplitude of 
variations among adjacent components composing the 
patterns. The approach, referred to as amplitude SA 
(ASA), was compared to traditional SA during a 
pharmacological challenge protocol [16] to assess 
complementary information.  

 
2. Methods 

2.1. SA 
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We followed the symbolic approach described in [6,7]. 
Briefly, the series y={yi, i=1,…,N}, where i is the 
progressive beat counter and N is the series length, was 
coarse-grained by subdividing the min-max range of y 
into ξ bins of equal amplitude. Each value yi was 
substituted with the integer value yξ

i, labelling the bin yi 
belonged to. Consecutive m integer yξ

i, values were 

grouped to form a pattern 𝒚௠,௜
ஞ

=

ൣ𝑦௜
ஞ

𝑦௜ାଵ
ஞ

… 𝑦௜ା௠ିଵ
ஞ ൧ of length m. According to 

previous recommendations, N was set to 256 to focus 
short-term regulatory mechanisms, ξ and m were set to 6 

and 3 respectively [6]. Each pattern 𝒚௠ୀଷ,௜
ஞୀ଺  was classified 

into four classes according to the number and sign of 
variations between adjacent components: i) no variation 
(0V) featuring m=3 equal symbols; ii) one variation (1V) 
presenting two consecutive equal symbols, while the third 
one was different; iii) two like variations (2LV) featuring 
two non-zero variations of the same sign between 
adjacent symbols; iv) two unlike variations (2UV) 
presenting two non-zero variations of opposite sign 

between adjacent symbols. Since any pattern 𝒚௠ୀଷ,௜
ஞୀ଺  fell 

into one, and only one, category, the sum of the number 
of 0V, 1V, 2LV and 2UV patterns was N‒m+1. The 
percentage of 0V, 1V, 2LV and 2UV patterns, indicated 
as 0V%, 1V%, 2LV% and 2UV%, was computed. 

 
2.2. ASA 

ASA approach acted on the pattern 𝒚௠ୀଷ,௜
ஞୀ଺  attributed to 

the 0V, 1V, 2LV and 2UV classes but it came back to the 
original HPs composing the pattern 𝒚௠ୀଷ,௜ and assessed 
their variance within 𝒚௠ୀଷ,௜. The variance was averaged 
within each class, expressed in ms2 and labelled as a0V, 
a1V, a2LV, and a2UV. 

 
3. Experimental protocol and series 
extraction 

3.1. Experimental protocol 

The experimental protocol was an arm of the 
pharmacological procedure designed to induce 
modifications of sympatho-vagal control [16]. All the 
subjects gave their written informed consent. The 
protocol adhered to the principles of the Declaration of 
Helsinki. The human research and ethical review board of 
the Hospices Civils de Lyon approved the protocol. 
Briefly, we studied 8 healthy male volunteers aged from 
25 to 46 years. Electrocardiogram (ECG) and noninvasive 
finger blood pressure (Finapress 2300, Ohmeda, 
Englewood, Colorado, USA) were recorded. Each 
experiment consisted of 15-20 minutes of recording at 
baseline (B) while resting in supine position followed by 

15-20 minutes of recording taken 120 minutes after oral 
administration of 6 μg∙kg‒1 of clonidine hydrochloride 
(CL). CL blocked the sympathetic outflow to heart and 
vasculature, while centrally increasing the cardiac 
parasympathetic activity [17]. 

  
3.2. HP variability extraction 

HP was measured as the temporal distance between 
two consecutive R-wave peaks detected on the ECG. HP 
was extracted on a beat-to-beat basis and corrected in the 
case of erroneous and missing detections. The series were 
linearly detrended. Sequences of 256 consecutive 
measurements were randomly selected inside each 
experimental condition. The mean and the variance of HP 
were indicated as μHP and σ2

HP respectively. They are 
expressed in ms and ms2 respectively. 

 
3.3. Statistical analysis 

Paired t-test, or Wilcoxon signed rank test when 
appropriate, was applied to check the impact of CL. After 
pooling together all markers regardless of the 
experimental condition, linear regression analyses 
between SA and ASA indexes computed over the same 
class were performed. We computed Pearson product 
moment correlation coefficient r and type I error 
probability p. Statistical analysis was performed with a 
commercial statistical software (Sigmaplot v.14.0, Systat 
Software, San Jose, CA, USA). A p<0.05 was always 
deemed as significant. 

 
4. Results 

After CL μHP lengthened significantly, while σ2
HP 

remained unvaried. 
The vertical error bar graphs of Fig.1 show 0V% 

(Fig.1a), 1V% (Fig.1b), 2LV% (Fig.1c), and 2UV% 
(Fig.1d) as a function of the experimental condition (i.e., 
B and CL). 2LV% decreased, and 2UV% increased after 
CL, while 0V% and 1V% did not vary. 

Figure 2 has the same structure as Fig.1, but it shows 
a0V (Fig.2a), a1V (Fig.2b), a2LV (Fig.2c), and a2UV 
(Fig.2d). Both a1V and a2UV increased after CL, while 
a0V and a2LV remained constant. 

A significant correlation was detected between 1V% 
and a1V (r=−0.745 and p=9.26×10−4) and between 
2UV% and a2UV (r=0.661 and p=5.34×10−3), while 
2LV% and a2LV were uncorrelated (r=−0.144, 
p=5.95×10−1) as well as 0V% and a0V (r=−0.403, 
p=1.22×10−1). 

 
5. Discussion 

5.1. SA vs ASA approach 
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SA is based on the decomposition and classification of 
patterns present in HP variability series with the aim of 
enhancing features linked to autonomic control and its 
complexity [3,4]. Being a nonlinear method, SA has the 
possibility to overcome limitations of more traditional 
time domain indexes such as the variance. In addition, SA 
is not based on the strict definition of frequency bands 
like spectral analysis [18], thus preventing categorizations 
based on arbitrary definitions of inferior and superior 
frequency limits. The characteristics support the 
hypothesis that SA might be more powerful than time and 
frequency domain methods in describing nonlinear 
interactions across different time scales and phenomena 
that cannot be explained according to the usual paradigm 
of reciprocal interactions between vagal and sympathetic 
modulations [19,20], such as those observed during 
strenuous exercise and exercise recovery [21].  

The major limitation of the SA technique is that SA 
accounts exclusively for the likelihood of the pattern class 
regardless of the amplitude of the changes of the HP 
values composing the pattern belonging to the considered 
class. Conversely, ASA method was explicitly designed 
to provide the magnitude of HP changes within the 
pattern that was averaged over all the patterns belonging 
to a given class. The concomitant use of SA and ASA 
approaches allows one to complement the information on 
the rate of the class with that of the relevance of the class 
in contributing to the variability of HP series.  

 
5.2. Impact of CL 

CL induced an increase of μHP, even though the 
magnitude of HP variability was not affected. 
Remarkably, SA and ASA were more powerful than the 
time domain approach in describing the impact of CL on 
HP variability. Indeed, SA and ASA indicated that both 
the rate and the amplitude of the fastest class, namely 

2UV, significantly increased. This result agrees with the 
notion that CL induces an inhibition of sympathetic 
control and an activation of the vagal one [16,17]. It is 
worth noting that the combined use of SA and ASA 
suggested a shift toward the high frequency oscillations 
given that 2LV% significantly decreased after CL, while 
2UV% and a2UV significantly augmented.  

 
5.3. SA and ASA provide complementary 
information 

When the level of association between SA and ASA 
indexes relevant to the same class was computed, we 
found that markers might be uncorrelated, thus indicating 
that classes of SA and ASA markers might provide 
complementary information. While the uncorrelation 
between 0V% and a0V might be expected because of the 
low likelihood of 0V class in our experimental protocol 
combined to the small variability of HP values forming 
the patters belonging to the 0V family, uncorrelation 
between 2LV% and a2LV suggests that there is no direct 
relationship between the rate of a pattern class and the 
magnitude of HP variability computed within a pattern 
averaged over the all components of the class. 

 
6.  Conclusions 

The study proposes the concomitant use of SA and 
ASA for a deeper characterization of the autonomic 
control from the analysis of spontaneous HP fluctuations. 
The combination of methods assures the concomitant 
evaluation of the rate of pattern families and amplitude of 
HP changes within patterns belonging to the same class. 
We recommend the combined use of SA and ASA for the 
characterization of autonomic function, especially in 
situations featuring modifications of cardiac control 

 
Figure 1. The vertical error bar graphs show 0V% (a), 
1V% (b), 2LV% (c), and 2UV% (d) at B and after CL. 
Data are reported as mean + standard deviation. The 
symbol * indicates p<0.05. 

 
Figure 2. The vertical error bar graphs show a0V (a), a1V 
(b), a2LV (c), and a2UV (d) at B and after CL. Data are 
reported as mean + standard deviation. The symbol * 
indicates p<0.05. 
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complexity such as during aging and sleep [22,23].  
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